

Unit-2

Industrial Pharmacy-1

B.Pharma 5th Sem Notes

Unit: 2

Tablets:

- **Introduction**, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipment's and tablet tooling.
- **Tablet coating**: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.
- **Quality control tests**: In process and finished product tests.

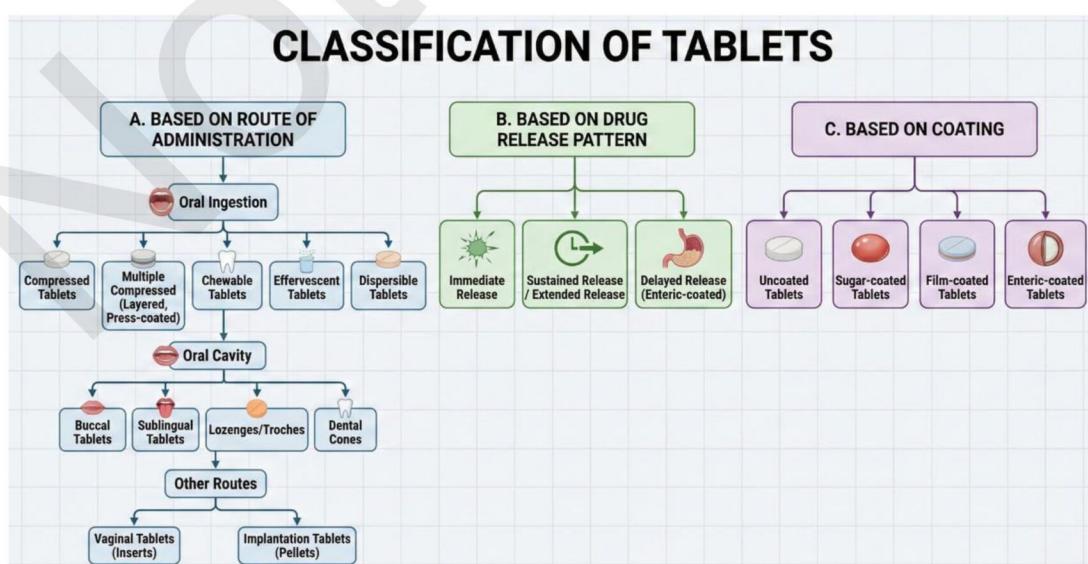
Liquid orals:

- Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in Pharmacopoeia.

Follow Our WhatsApp & Telegram channel for more update (Noteskarts B.Pharma Notes)

Tablets:

- **Introduction**, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipment's and tablet tooling.


Introduction:

- Tablets are solid unit dosage forms containing one or more active pharmaceutical ingredients (API) with suitable excipients.
- They are prepared by compression or molding and are the most widely used oral dosage forms due to their convenience, stability, and accuracy of dose.

Ideal Characteristics of Tablets:

- Accurate and uniform dose of drug
- Sufficient mechanical strength (hardness and low friability)
- Rapid disintegration and dissolution (for conventional tablets)
- Chemical, physical, and microbial stability
- Elegant appearance and smooth surface
- Acceptable taste and odor
- Easy to swallow
- Should not cap, laminate, or crack during handling
- Uniform weight and thickness

Classification of Tablets:

Excipients

Definition:

Excipients are pharmacologically inactive substances added to the active pharmaceutical ingredient (API) to assist in the manufacturing process or to improve the stability, bioavailability, and patient acceptability of the final product.

Or

Excipients are pharmacologically inactive substances used along with the active drug to give bulk, stability, palatability, and proper manufacturing characteristics to tablets.

Uses:

- To give required size and shape to tablets
- To improve flow and compressibility
- To enhance stability of drug
- To improve taste, color, and appearance
- To control drug release and disintegration

Ideal Characteristics of Excipients:

- Chemically and physically stable
- Non-toxic and non-irritant
- Compatible with the drug
- Economical and easily available
- Should not interfere with drug action

Advantages:

- Improve manufacturability
- Improve patient acceptability
- Enhance tablet stability
- Ensure dose uniformity

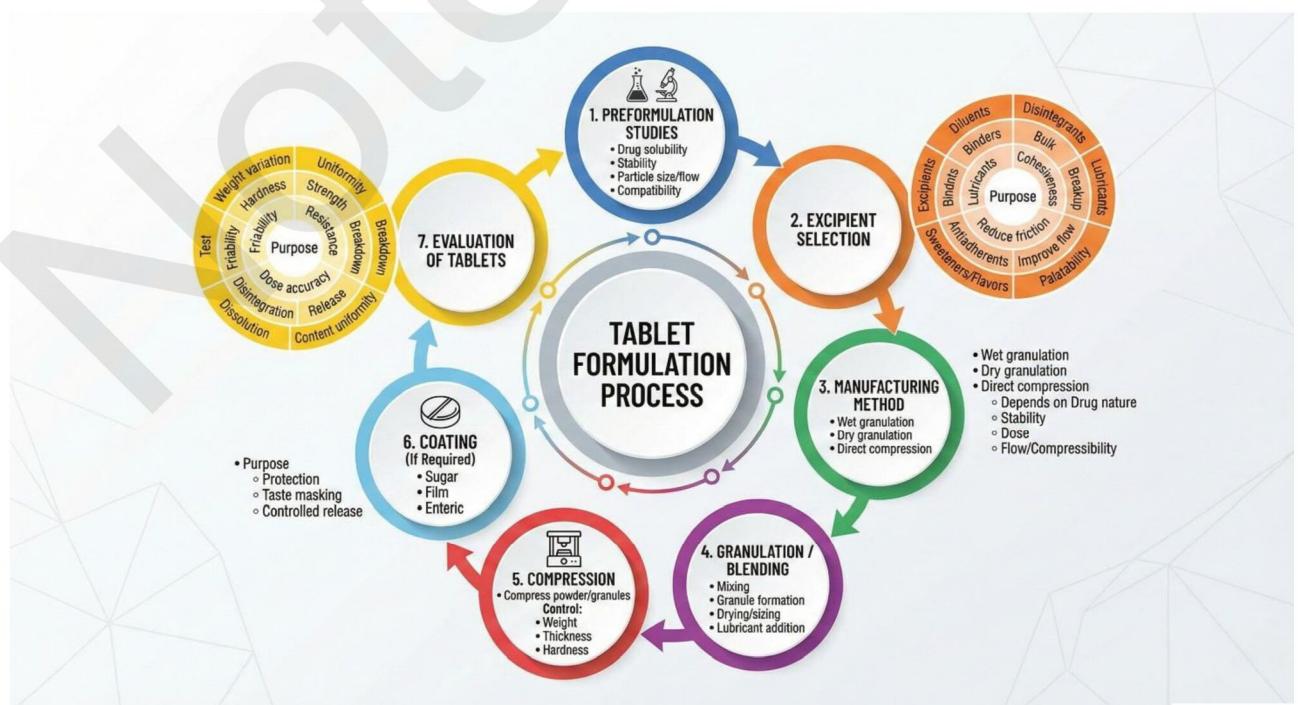
Disadvantages:

- Possible drug-excipient incompatibility
- May cause allergic reactions in some patients
- Increase formulation cost

Formulation of Tablets

Definition:

Formulation of tablets is the systematic process of selecting suitable drug substance, excipients, and manufacturing method to prepare tablets that are stable, effective, safe, and acceptable to patients.


Objectives of Tablet Formulation

- To deliver accurate and uniform dose
- To ensure chemical and physical stability of drug
- To provide desired drug release profile
- To achieve good hardness, friability, and disintegration
- To make tablets elegant and acceptable

Ideal Characteristics of a Tablet Formulation

- Uniform weight and content
- Adequate mechanical strength
- Rapid and uniform disintegration (for conventional tablets)
- Good dissolution rate
- Stability during storage
- No interaction between drug and excipients

Steps in Formulation of Tablets

Subscribe & Visit our Website For Notes

1. Preformulation Studies

- Drug solubility
- Stability
- Particle size and flow properties
- Drug-excipient compatibility

2. Selection of Excipients

Excipients	Purpose
Diluents	Increase bulk
Binders	Provide cohesiveness
Disintegrants	Break tablet into particles
Lubricants	Reduce friction
Glidants	Improve flow
Antiadherents	Prevent sticking
Sweeteners/Flavors	Improve palatability

3. Selection of Manufacturing Method

- Wet granulation
- Dry granulation
- Direct compression

Depends on:

- Nature of drug
- Stability
- Dose size
- Flow and compressibility

4. Granulation / Blending

- Mixing of drug and excipients
- Granule formation (if required)
- Drying and size reduction
- Addition of lubricants

5. Compression

- Powder/granules are compressed into tablets
- Control of:
 - Weight
 - Thickness
 - Hardness

Subscribe & Visit our Website For Notes

6. Coating (if required)

- Sugar coating
- Film coating
- Enteric coating

Purpose:

- Protection of drug
- Taste masking
- Controlled release

7. Evaluation of Tablets

Test	Purpose
Weight variation	Uniformity
Hardness	Mechanical strength
Friability	Resistance to abrasion
Disintegration	Breakdown time
Dissolution	Drug release
Content uniformity	Dose accuracy

Advantages of Proper Tablet Formulation

- Accurate dosing
- Better therapeutic effect
- Improved stability
- Patient convenience
- Large-scale manufacturing

Disadvantages / Limitations

- Time-consuming development
- High cost of equipment
- Risk of processing problems (capping, sticking, lamination)
- Requires skilled formulation development

Scan This QR For Only GPAT Test Series

Granulation Methods

Definition:

Granulation is the process of converting fine powders into free-flowing granules suitable for compression.

Types:

A. Wet Granulation

Uses:

- For drugs with poor compressibility

Advantages:

- Good content uniformity

- Strong tablets

Disadvantages:

- Time consuming

- Not suitable for moisture/heat sensitive drugs

B. Dry Granulation

Uses:

- For moisture and heat sensitive drugs

Advantages:

- No use of liquid

- Fewer steps

Disadvantages:

- Less uniformity for low-dose drugs

C. Direct Compression

Uses:

- When powders have good flow and compressibility

Advantages:

- Simple and economical

- Fewer processing steps

Disadvantages:

- Limited choice of excipients

- Risk of segregation

Processing Problems in Tablets

Definition:

Processing problems are defects that occur during manufacturing, compression, or handling of tablets, which affect their quality, appearance, and performance.

Problem	Definition	Causes	Remedies
Capping	Partial or complete separation of the top or bottom of tablet	Air entrapment, low binder, high speed	Increase binder, reduce compression speed
Lamination	Tablet splits into layers	Excess compression, air entrapment	Reduce pressure, improve granulation
Sticking	Tablet material sticks to punches	Moist granules, insufficient lubricant	Dry granules, add lubricant
Picking	Material removed from tablet surface by punch	Rough punch surface, sticky granules	Polish punches, add antiadherent
Chipping	Breaking of tablet edges	Low hardness, worn tooling	Increase compression force
Mottling	Uneven color distribution	Improper mixing, dye migration	Improve mixing, use pigments
Cracking	Small cracks on tablet surface	Large granules, rapid drying	Reduce granule size, control drying
Double impression	Duplicate logo on tablet	Free rotation of punches	Use anti-turning devices
Weight variation	Unequal tablet weights	Poor flow of granules	Improve flow, proper granulation
Hardness variation	Uneven tablet strength	Uneven compression force	Machine calibration

Scan This QR For Notes, GPAT, And Jobs

Related Update

Equipment Used in Tablet Manufacturing

Equipment are machines used for different stages of tablet production, from mixing to evaluation.

Major Equipment and Their Uses

Equipment	Use
Rapid Mixer Granulator (RMG)	Mixing and wet granulation
Fluidized Bed Dryer (FBD)	Drying of wet granules
Multi-mill / Co-mill	Size reduction
Double Cone Blender	Mixing of powders
Tablet Compression Machine	Compression of tablets
Coating Pan / Auto Coater	Tablet coating
Hardness Tester	Measures hardness
Friabilator	Measures friability
Disintegration Test Apparatus	Measures disintegration time
Dissolution Apparatus	Measures drug release

Advantages of Equipment:

- High production rate
- Consistent quality
- Automation possible

Disadvantages:

- High initial cost
- Needs skilled operation
- Maintenance required

Tablet Tooling

Definition:

Tablet tooling refers to the punches and dies used in tablet compression machines to shape tablets.

Components of Tooling

- Upper punch
- Lower punch
- Die

Types of Tooling

- **B tooling** – Common, medium-sized tablets
- **D tooling** – For large tablets

Uses

- Determines tablet size, shape, and embossing
- Controls tablet thickness and weight

Advantages

- Uniform tablet production
- High manufacturing efficiency

Disadvantages

- Wear and tear of punches and dies
- Expensive replacement
- Requires regular maintenance

Scan This QR For Notes, GPAT, And Jobs Related Update

Scan This QR For Only GPAT Test Series

Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.

Tablet Coating –

Introduction:

Tablet coating is the process of applying a **thin layer of coating material** on the surface of tablets to:

- Protect the drug from environment
- Mask unpleasant taste/odor
- Improve appearance & patient compliance
- Control drug release (enteric/controlled)

Types of Tablet Coating

Type of Coating	Description	Examples
Sugar Coating	Tablets coated with sugar syrup	Vitamins, lozenges
Film Coating	Thin polymer film on tablet	Paracetamol, antibiotics
Enteric Coating	Prevents drug release in stomach	Aspirin, Omeprazole
Controlled / Sustained Release Coating	Controls rate of drug release	SR tablets
Compression Coating	Dry coating using compression	Sensitive drugs

Coating Materials

Coating Materials

(a) Polymers (Film Formers)

- HPMC (Hydroxypropyl methylcellulose)
- Ethyl cellulose
- Cellulose acetate phthalate (CAP)
- Eudragit (L, S, RS, RL)

(b) Plasticizers

- PEG (Polyethylene glycol)
- Glycerin
- Propylene glycol

(c) Coloring Agents

- Titanium dioxide
- Iron oxides
- Approved dyes

(d) Solvents

- Water
- Ethanol
- Isopropyl alcohol
- Acetone

(e) Anti-tacking Agents

- Talc
- Magnesium stearate
- Silicon dioxide

(a) Polymers (Film Formers)

- HPMC (Hydroxypropyl methylcellulose)
- Ethyl cellulose
- Cellulose acetate phthalate (CAP)
- Eudragit (L, S, RS, RL)

(b) Plasticizers

- PEG (Polyethylene glycol)
- Glycerin
- Propylene glycol

(c) Coloring Agents

- Titanium dioxide
- Iron oxides
- Approved dyes

(d) Solvents

- Water
- Ethanol
- Isopropyl alcohol

- Acetone

(e) Anti-tacking Agents

- Talc
- Magnesium stearate
- Silicon dioxide

Formulation of Coating Composition

Typical Film Coating Formula

S.No	Ingredient	Function
1.	Polymer	Forms coating film
2.	Plasticizer	Improves flexibility
3.	Colorant	Provides color
4.	Solvent	Dissolves polymer
5.	Anti-tacking agent	Prevents sticking

1. Film-Forming Polymers

The polymer is the most critical ingredient. It must be soluble in the solvent of choice and capable of forming a continuous, tough, and elegant film.

- **Non-Enteric (Gastric Soluble):** These dissolve quickly in the stomach.
 - **HPMC (Hydroxypropyl Methylcellulose):** The industry standard. It is cheap, flexible, and provides a high-quality finish.
 - **HPC (Hydroxypropyl Cellulose):** Very tacky; often used in combination with other polymers to improve adhesion.
 - **Vinyl Polymers (PVP/Povidone):** Highly water-soluble but can be slightly brittle.
- **Enteric (Gastro-Resistant):** These protect the drug from stomach acid or protect the stomach from irritating drugs. They only dissolve at $\text{pH} > 5.5$.
 - **CAP (Cellulose Acetate Phthalate):** Traditional but requires plasticizers.
 - **Eudragit (Methacrylic acid copolymers):** Highly versatile; different grades allow for release at specific points in the intestine.

2. Plasticizers

Without a plasticizer, the polymer film would be like dry glass—it would crack or peel off as the tablet expands or contracts. Plasticizers "soften" the polymer chains.

Subscribe & Visit our Website For Notes

- **Mechanism:** They reduce the **Glass Transition Temperature (T_g)** of the polymer.
- **Common Types:**
 - **Polyols:** Glycerin, Propylene Glycol, Polyethylene Glycols (PEG).
 - **Organic Esters:** Citrate esters (Triethyl citrate), Phthalate esters (Diethyl phthalate).
 - **Oils/Glycerides:** Fractionated coconut oil, Castor oil.

3. Colorants and Opacifiers

These are used for brand recognition, aesthetics, and to protect light-sensitive active pharmaceutical ingredients (APIs).

- **Lakes:** These are aluminum salts of FD&C dyes. They are preferred for coating because they are water-insoluble and provide consistent, "non-bleeding" color.
- **Inorganic Pigments:** Iron oxides (Yellow, Red, Black) are very stable and provide excellent opacity.
- **Opacifiers (Titanium Dioxide):** This is a white pigment added to make the coating opaque. It helps hide the color of the tablet core and provides a "blank canvas" for other colors.

4. Solvents (The Vehicle)

The solvent carries the ingredients to the tablet surface. Once the spray hits the warm tablet, the solvent must evaporate quickly.

- **Water:** The most common choice. It is safe, non-flammable, and eco-friendly, but it requires more energy (heat) to evaporate.
- **Organic Solvents:** (e.g., Ethanol, Methanol, Isopropyl Alcohol, Methylene Chloride). These evaporate very fast but require specialized "explosion-proof" equipment and solvent recovery systems to prevent environmental damage.

5. Miscellaneous Additives

- **Anti-Tack Agents:** (e.g., **Talc** or **Magnesium Stearate**). These prevent the tablets from sticking to each other ("twinning") during the coating process.
- **Surfactants:** Added to help the coating liquid spread evenly over the tablet surface.
- **Flavoring/Sweeteners:** Used primarily for chewable tablets to mask the bitter taste of the drug.

Formulation Breakdown Table

Ingredient Class	Typical Concentration (% w/w)	Purpose
Polymer	7% – 18%	Forms the actual film
Plasticizer	0.5% – 2.0%	Provides flexibility
Colorant/Opacifier	0.1% – 1.0%	Appearance and light protection
Solvent/Vehicle	80% – 90%	Dissolves/suspends ingredients

Methods of Tablet Coating

(a) Sugar Coating Method

Steps:

1. Sealing
2. Sub-coating
3. Syrup coating
4. Coloring
5. Polishing

(b) Film Coating Method

- Polymer solution is **sprayed**
- Hot air dries tablets simultaneously

(c) Enteric Coating Method

- Uses **pH-sensitive polymers**
- Drug released only in intestine

(d) Compression Coating

- Dry process
- Tablet core surrounded by coating powder

Equipment Employed in Tablet Coating

Equipment	Description
Conventional Coating Pan	Used in sugar coating
Perforated Coating Pan	Efficient film coating
Fluidized Bed Coater	Uniform coating
Spray System	Atomizes coating solution
Hot Air Blower	Drying tablets

Equipment Employed in Tablet Coating

Tablet coating requires specialized equipment to ensure **uniform coating, efficient drying, and defect-free tablets**. The commonly used equipment are explained below in an **exam-oriented** manner.

1. Conventional Coating Pan (Standard Pan)

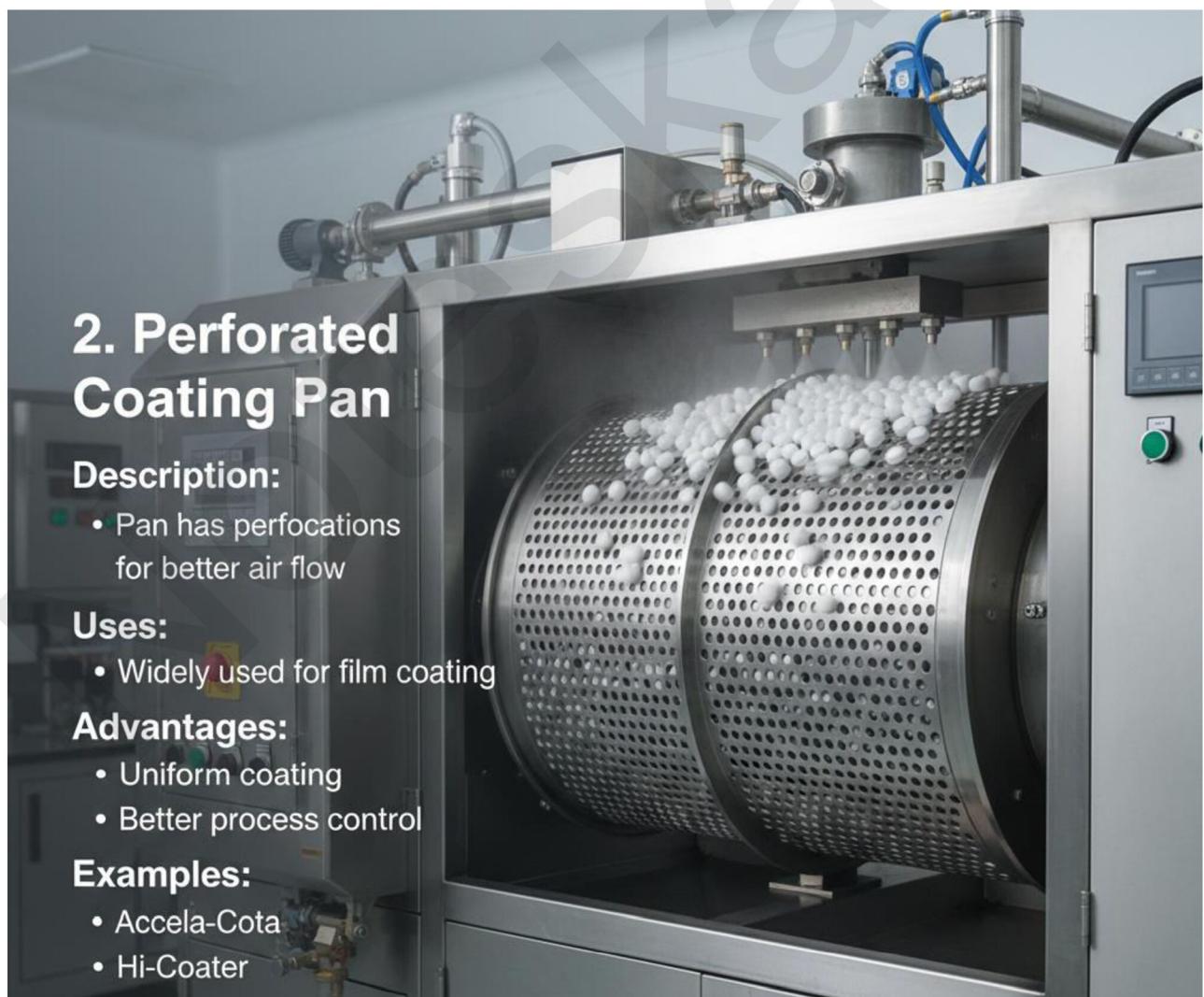
Description

- Circular, stainless-steel pan mounted on an inclined stand
- Pan rotates while coating solution is poured or sprayed

Subscribe & Visit our Website For Notes

Uses

- Mainly for sugar coating


Advantages

- Simple design
- Low cost

Disadvantages

- Non-uniform coating
- Longer processing time
- High labor requirement

2. Perforated Coating Pan

Subscribe & Visit our Website For Notes

Description

- Pan has **perforations** for better air flow
- Hot air passes through tablets during coating

Uses

- Widely used for **film coating**

Advantages

- Faster drying
- Uniform coating
- Better process control

Examples

- Accela-Cota
- Hi-Coater

3. Fluidized Bed Coater (Air Suspension Coater)

Subscribe & Visit our Website For Notes

Description

- Tablets are suspended in a stream of hot air
- Coating solution is sprayed onto fluidized tablets

Uses

- Film coating
- Enteric coating
- Controlled-release coating

Advantages

- Highly uniform coating
- Efficient heat transfer

Disadvantages

- High equipment cost
- Skilled operation required

4. Spray System

Subscribe & Visit our Website For Notes

Description

- Consists of spray guns or nozzles
- Atomizes coating solution into fine droplets

Function

- Ensures **uniform distribution** of coating material

Types

- Air spray nozzle
- Airless spray nozzle

5. Hot Air Drying System

Description

- Supplies heated air during coating process

Function

- Removes solvent
- Speeds up drying
- Prevents tablet sticking

Scan This QR For Notes, GPAT, And Jobs Related Update

Quality control tests: In process and finished product tests.

Quality control tests:

Quality control (QC) tests are carried out to ensure that tablets are **safe, effective, uniform, and of acceptable quality**. These tests are divided into:

1. **In-Process Quality Control (IPQC) Tests**
2. **Finished Product Quality Control Tests**

1. In-Process Quality Control (IPQC) Tests

These tests are performed *during* the manufacturing process (granulation, blending, compression) to monitor the process and prevent defects. If a problem is found here, the machine can be adjusted immediately, saving the batch from being rejected later.

A. Tests on Granules (Pre-Compression Parameters)

Before the powder/granules are compressed into tablets, their flow properties are checked.

- **Angle of Repose:**
 - **Definition:** The maximum angle possible between the surface of a pile of powder and the horizontal plane.
 - **Purpose:** Measures flowability. Lower angles ($<30^\circ$) indicate excellent flow; higher angles ($>40^\circ$) indicate poor flow.
 - **Formula:** $\tan(\theta) = h/r$ (where h is height and r is radius of the pile).
- **Bulk Density & Tapped Density:**
 - Used to determine how much the powder settles.
 - **Carr's Index (Compressibility Index):** Measures the tendency of powder to be compressed.
 - **Hausner's Ratio:** Another measure of flow capability.
- **Moisture Content (LOD - Loss on Drying):**
 - **Purpose:** To ensure granules have enough moisture to bind together but not enough to cause sticking or degradation.
 - **Method:** A sample is weighed, heated to remove moisture, and weighed again.

B. Tests During Compression (Processing Parameters)

These are checked periodically (e.g., every 15-30 minutes) while the tablet press is running.

- **Thickness & Diameter:**

- **Importance:** Ensures consistent tablet size for packaging (blister packs) and uniform appearance.
- **Tool:** Vernier Caliper or Micrometer.
- **Limit:** usually $\pm 5\%$ variation is allowed.

- **Hardness (Crushing Strength):**

- **Definition:** The force required to break a tablet across the diameter.
- **Importance:** If too soft, it breaks during shipping; if too hard, it may not dissolve in the stomach.
- **Standard:** Usually 4–8 kg/cm² (varies by tablet size).
- **Equipment:** Monsanto, Pfizer, or Digital Hardness Testers.

2. Finished Product Quality Control (FPQC) Tests

These tests are performed on the final tablets after the batch is completed. They are categorized into **Official (Pharmacopoeial)** and **Non-Official (General)** tests.

A. General / Non-Official Tests

These are critical for quality but are not always specified in the main monograph of pharmacopoeias (USP/BP/IP).

- **Organoleptic Properties:**

- **Appearance:** Visual check for capping, lamination, or chipping.
- **Color:** Must be uniform without mottling (uneven color distribution).
- **Odor/Taste:** Checks for specific sensory characteristics (e.g., chewable tablets).

- **Friability Test:**

- **Definition:** Measures the tablet's resistance to abrasion and shock (crumbling) during packaging and transport.
- **Equipment:** Roche Friabilator.
- **Procedure:**
 1. Weigh a sample of tablets (W_{initial}).
 2. Place them in the drum.
 3. Rotate at 25 RPM for 4 minutes (100 drops).
 4. Dedust and weigh again (W_{final}).
- **Acceptance Limit:** Weight loss should not exceed **1.0%**.

B. Official Tests (Pharmacopoeial)

These are mandatory tests described in IP, BP, and USP.

1. Weight Variation Test

- **Purpose:** Ensures that each tablet contains the correct amount of drug (assuming the mixture is uniform).
- **Procedure:**
 1. Weigh 20 tablets individually.
 2. Calculate the average weight.
 3. Compare individual weights to the average.
- **IP/BP Limits (Percentage Deviation Allowed):** | Average Weight of Tablet | Maximum % Deviation Allowed | | :--- | :--- | | 80 mg or less | \pm 10% | | More than 80 mg to less than 250 mg | \pm 7.5% | | 250 mg or more | \pm 5% | (Note: No more than 2 tablets can cross the limit, and none can cross twice the limit.)

2. Content Uniformity

- **Purpose:** Used for potent drugs (low dose) to ensure every tablet has the exact amount of active drug (API), not just the correct weight.

Subscribe & Visit our Website For Notes

- **Procedure:** 10 tablets are assayed individually. The amount of active ingredient usually must lie within 85%–115% of the label claim.

3. Disintegration Test (DT)

- **Definition:** The time required for a tablet to break down into small particles under experimental conditions.
- **Equipment:** Disintegration Apparatus (basket rack assembly moving up and down in a water bath at 37°C).
- **Limits (General):**
 - **Uncoated Tablets:** NMT (Not More Than) 15 minutes.
 - **Coated Tablets:** NMT 60 minutes.
 - **Enteric Coated:** Should *not* disintegrate in acid (2 hrs) but *must* disintegrate in buffer (1 hr).
 - **Dispersible/Soluble:** NMT 3 minutes.

4. Dissolution Test

- **Definition:** Measures the rate and extent at which the drug goes into solution (bioavailability indicator). This is more critical than disintegration because a drug must be dissolved to be absorbed.
- **Equipment:**
 - Type 1: Basket Apparatus.
 - Type 2: Paddle Apparatus.
- **Procedure:** A single tablet is placed in a vessel containing buffer at 37°C. Samples are withdrawn at intervals to analyze drug concentration.
- **Acceptance:** Typically, $\$Q+5\%\$$ (where Q is the amount specified in the monograph, usually 75-80% dissolved in 30-45 mins).

**Scan This QR For Notes, GPAT, And Jobs
Related Update**

Summary Table for Quick Revision

Test	Type	Key Limit / Standard
Angle of Repose	IPQC (Granules)	< 30° is excellent flow
LOD (Moisture)	IPQC (Granules)	Depends on product (often 1-3%)
Hardness	IPQC/FPQC	4–8 kg/cm ² (typically)
Friability	FPQC	NMT 1.0% weight loss
Weight Variation	FPQC (Official)	± 10%, 7.5%, or 5%
Disintegration	FPQC (Official)	Uncoated: < 15 mins
Dissolution	FPQC (Official)	Measure of bioavailability

Scan This QR For Notes, GPAT, And Jobs
Related Update

Liquid orals:

- Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in Pharmacopoeia.

Liquid Oral Dosage Forms (Detailed Notes)

Liquid orals are pharmaceutical preparations intended for **oral administration** in liquid form. They are especially useful for **pediatric, geriatric, and dysphagic patients** and for drugs requiring **rapid onset of action**.

1. Classification of Liquid Orals

A. Monophasic Liquid Orals

(Drug completely dissolved)

- **Syrups**
- **Elixirs**
- **Linctus**
- **Oral drops**
- **Solutions**

B. Biphasic Liquid Orals

(Drug dispersed, not dissolved)

- **Suspensions**
- **Emulsions**

2. Syrups

Definition:

Syrups are **concentrated aqueous solutions of sugar (usually sucrose)** with or without medicaments.

Ideal Characteristics

- Clear and transparent
- Pleasant taste
- Free from crystallization

Subscribe & Visit our Website For Notes

- Microbiologically stable

Composition

- Sucrose (60–85%)
- Purified water
- Active drug
- Flavoring & coloring agents
- Preservatives (if needed)

Advantages

- Good palatability
- Self-preserving at high sugar concentration

Disadvantages

- Not suitable for diabetic patients
- Risk of crystallization

3. Elixirs

Definition:

Elixirs are **clear, sweetened, flavored hydro-alcoholic solutions** for oral use.

Composition

- Alcohol
- Water
- Sweeteners
- Flavoring agents
- Active drug

Advantages

- Suitable for alcohol-soluble drugs
- Better chemical stability

Disadvantages

- Alcohol content limits pediatric use

4. Linctus

Definition:

Linctus is a **viscous, sweetened oral liquid** used mainly for **relief of cough**.

Characteristics

- Taken in small doses
- Should be swallowed slowly
- Forms soothing film on throat

Examples

- Codeine linctus
- Simple linctus

5. Oral Drops

Definition:

Oral drops are **concentrated liquid preparations** intended to be administered in **small volumes** using a dropper.

Uses

- Pediatric medicines
- Vitamins
- Potent drugs

6. Suspensions

Definition:

Suspensions are **biphasic liquid dosage forms** in which **finely divided insoluble drug particles** are dispersed in a liquid medium.

Ideal Characteristics

- Uniform particle size
- Easily redispersible
- No caking

Components

- Drug
- Suspending agents (CMC, xanthan gum)

Subscribe & Visit our Website For Notes

- Wetting agents
- Preservatives
- Vehicle (water)

Advantages

- Suitable for insoluble drugs
- Better stability than solutions

Disadvantages

- Physical instability
- Sedimentation issues

7. Emulsions

Definition:

Emulsions are **biphasic liquid preparations** consisting of **two immiscible liquids**, one dispersed in the other using an emulsifying agent.

Types

- **Oil-in-water (O/W)** – Oral use
- **Water-in-oil (W/O)** – Rare in oral use

Components

- Oil phase
- Aqueous phase
- Emulsifying agent
- Preservatives
- Flavoring agents

Advantages

- Masks unpleasant taste of oils
- Improved absorption of lipophilic drugs

Disadvantages

- Risk of phase separation
- Requires careful formulation

Advantages of Liquid orals:

- **Faster Absorption:** Unlike tablets, liquid orals don't need to disintegrate, so the drug is absorbed more quickly.
- **Flexible Dosing:** Dose can be easily adjusted (e.g., 5 mL vs. 10 mL) based on patient needs.
- **Ease of Administration:** Ideal for patients with **dysphagia** (difficulty swallowing).
- **Uniformity:** In monophasic liquids, the drug is uniformly distributed.

Disadvantages of Liquid orals:

- **Stability Issues:** Drugs are generally less stable in liquid form than in solid form (prone to hydrolysis or oxidation).
- **Microbial Growth:** High water content makes them a breeding ground for bacteria and fungi.
- **Taste Masking:** It is much harder to hide the bitter taste of a drug in a liquid than in a coated tablet.
- **Portability:** Bulky to carry and prone to breakage or leakage.

Scan This QR For Notes, GPAT, And Jobs Related Update

1. Syrups (Aqueous Solutions)

Syrups are concentrated, viscous, aqueous preparations of a sugar or sugar substitute.

Formulation Considerations

- **Sucrose Concentration:** Traditionally 66.7% w/w (IP) or 85% w/v (USP). This high concentration provides **osmotic preservation**, meaning it inhibits microbial growth by drawing water out of microorganisms.
- **Polyols:** Sorbitol or glycerin are often added to prevent "Cap Locking" (crystallization of sugar in the bottle neck).
- **Inversion:** If heated too high, sucrose breaks down into glucose and fructose (invert sugar). While sweeter, this can make the syrup more prone to fermentation and darkening.

Manufacturing Steps

1. **Hot Process:** Sucrose is added to purified water and heated until dissolved. Best for heat-stable components.
2. **Agitation without Heat:** Used for heat-sensitive drugs. It takes longer but prevents sugar inversion.
3. **Percolation:** Water is passed slowly through a bed of crystalline sucrose.
4. **Finishing:** The syrup is strained or filtered, and the volume is adjusted.

2. Elixirs (Hydro-alcoholic Solutions)

Elixirs are clear, sweetened, hydro-alcoholic liquids intended for oral use.

Formulation Considerations

- **Alcohol Content:** Usually ranges from 5% to 40%. Alcohol acts as a co-solvent to dissolve drugs that aren't water-soluble.
- **Self-Preserving:** Elixirs containing more than 10-12% alcohol usually do not require additional preservatives.
- **Sweeteners:** They use less sugar than syrups (making them less viscous) and often utilize saccharin for extra sweetness.

Manufacturing Steps

1. **Two-Pot Method:** Dissolve water-soluble ingredients in water and alcohol-soluble ingredients in alcohol.
2. **Mixing:** The aqueous phase is added to the alcoholic phase (never the reverse) to maintain the highest possible alcohol concentration during mixing, preventing drug precipitation.
3. **Clarification:** Often filtered using Talc or Siliceous earth to absorb excess oils and ensure a brilliant, clear appearance.

3. Suspensions (Biphasic: Solid in Liquid)

Suspensions are used when the drug is insoluble or to mask a bitter taste (since the drug isn't dissolved, it doesn't hit the taste buds as quickly).

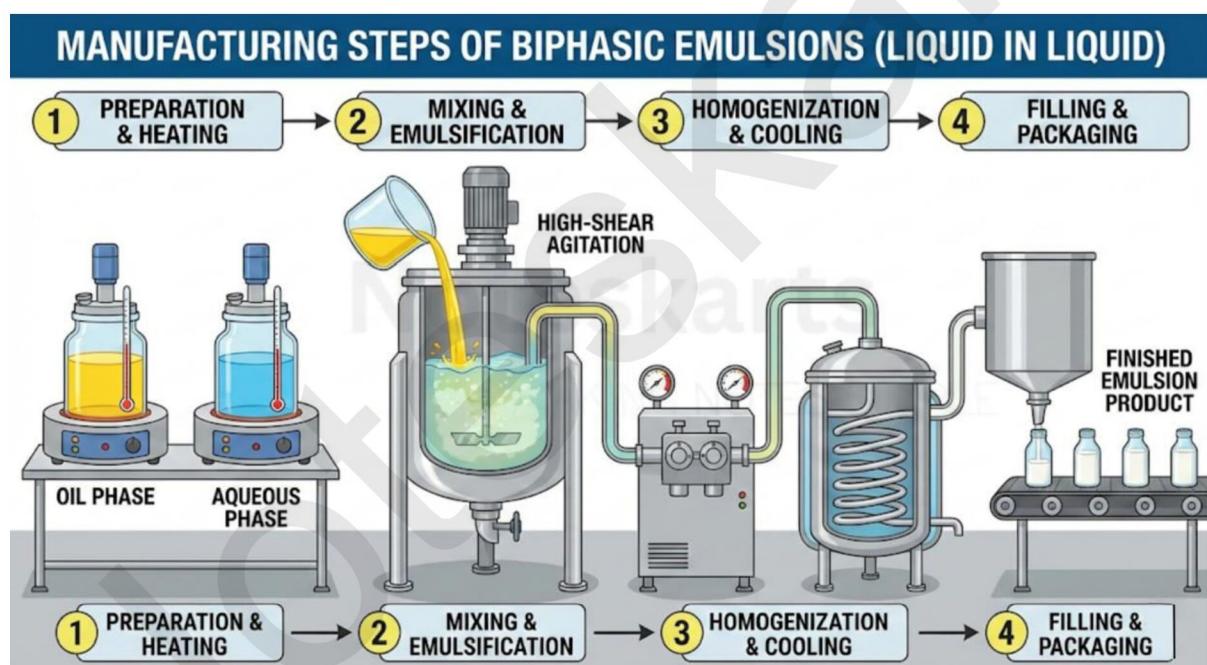
Formulation Considerations

- **Wetting Agents:** Surfactants (like Polysorbates) reduce the interfacial tension so the liquid can "wet" the individual drug particles.
- **Flocculating Agents:** Electrolytes that create "flocs" (loose clusters). While these settle faster, they are easily redistributed with a shake.
- **Suspending Agents:** (e.g., Xanthan gum, CMC) Increase viscosity to slow down the settling rate of particles.

Manufacturing Steps

1. **Particle Size Reduction:** The drug must be finely micronized (usually via a colloid mill).
2. **Wetting:** The drug powder is mixed with a wetting agent to form a smooth paste.
3. **Dispersion:** The paste is diluted with the vehicle containing the dissolved preservatives and flavors.
4. **Homogenization:** The final mixture is passed through a homogenizer to ensure uniform particle distribution.

Subscribe & Visit our Website For Notes


4. Emulsions (Biphasic: Liquid in Liquid)

Emulsions consist of two immiscible liquids (Oil and Water) stabilized by an emulsifying agent.

Formulation Considerations

- **Emulsifying Agents (Emulgents):** Critical for stability. Examples include Acacia, Tragacanth, or synthetic surfactants (HLB value is key here).
- **Phase Volume Ratio:** Usually, the internal phase makes up 40-60% of the total volume.
- **Antioxidants:** Essential if the oil phase is prone to rancidity.

Manufacturing Steps

1. Filling and Packaging of Liquid Orals

The filling process must be precise to ensure dose uniformity and prevent contamination.

Filling Operations

- **Volumetric Filling:** The most common method. A piston pumps a specific volume of liquid into the container. Highly accurate for thin liquids like elixirs.

Subscribe & Visit our Website For Notes

- **Level Filling:** Fills the bottle up to a certain height. It looks better on a shelf (uniform levels) but is less accurate if bottle thickness varies.
- **Vacuum Filling:** Used for high-speed lines to prevent foaming and dripping.

Packaging Components

- **Containers:** * **Glass:** Type III (soda-lime) or Type I (borosilicate). Amber glass is used for light-sensitive drugs.
 - **Plastic:** PET or HDPE are popular for being lightweight and shatterproof.
- **Closures (Caps):** Must provide a moisture-proof seal. Child-resistant closures (CRC) are often required for potent liquid medications.
- **Induction Sealing:** A foil seal applied to the bottle rim to ensure the product is tamper-evident.

II. Evaluation of Liquid Orals (Official in Pharmacopoeia)

Quality control tests are performed to ensure the liquid oral preparation meets the safety and efficacy standards set by Pharmacopoeias like the **United States Pharmacopeia (USP)**, **British Pharmacopoeia (BP)**, or **Indian Pharmacopoeia (IP)**.

1. Physical Parameters (General)

- **Appearance:** Checked for clarity (solutions), homogeneity (emulsions/suspensions), color, and odor.
- **pH:** The pH is measured using a pH meter to ensure it remains within the stability range of the drug.
- **Viscosity:** Measured using a viscometer (e.g., Brookfield). Crucial for "pourability" and the physical stability of emulsions/suspensions.
- **Specific Gravity/Density:** Measured using a pycnometer or hydrometer to ensure the correct concentration of solids/solvents.

2. Official Pharmacopoeial Tests

These are the mandatory tests specified in the monographs.

Test Parameter	Description & Standard
Deliverable Volume (USP <698>)	Ensures the user can actually pour out the labeled amount from the bottle.

Test Parameter	Description & Standard
Uniformity of Volume (BP/IP) <i>or</i>	Method: A random sample of containers (usually 10-30) is emptied, and the volume is measured. Acceptance: The average volume must not be less than the labeled volume (e.g., 100% of label claim).
Microbial Limit Test (MLT)	Checks for the total count of bacteria and fungi and the absence of specific pathogens (e.g., <i>E. coli</i> , <i>Salmonella</i>). Mandatory for aqueous preparations prone to microbial growth.
Assay (Content Estimation)	Determines the exact amount of active pharmaceutical ingredient (API) present. Method: HPLC, UV-Spectroscopy, or Titration. Limit: Typically 90% – 110% of the labeled amount.
Alcohol Content	If the formulation contains ethanol (e.g., elixirs, tinctures), the percentage of alcohol is determined, usually by gas chromatography or distillation.
Antimicrobial Preservative Effectiveness	If a preservative is added, the formulation is challenged with specific microorganisms to ensure the preservative can prevent growth over time (Challenge Test).

3. Specific Tests for Biphasic Liquids

If the liquid oral is an **Emulsion** or **Suspension**, additional tests are required:

- **Sedimentation Volume (F):** For suspensions, measures how quickly particles settle and how easily they redisperse.

Subscribe & Visit our Website For Notes

- **Globule Size Analysis:** For emulsions, ensures oil droplets remain small enough to prevent coalescence (separation).
- **Zeta Potential:** Measures the electrical charge on particles/globules to predict long-term stability (higher charge = better stability).

🎓 📚 Thank You for Reading! 📚 🎓

🎓 We hope this book helped you in your studies.

If you want to access 📕 complete notes, 📥 PDFs, and 📚 study material for your course, scan the QR code below. 📱

↗️📱 ✨ Scan & Download All Notes ✨↗️📱

☞ What You'll Get:

- 📘 B.Pharm & D.Pharm Notes
- 📘 Exam-Oriented PDF Materials
- 🔔 Regular Updates & New Content

✨🔊 Stay Connected for More Updates 🔊✨

🌐 Visit: <https://noteskarts.com/>

✉️ Contact: noteskartsconnect@gmail.com

✓ One Scan = ➡️ All Notes at Your Fingertips! 🤘