Unit-3 Pharmacology- III

B.Pharma 6th Sem Notes

Unit: 3

- 3. Chemotherapy
 - A. Antitubercular agents
 - **B.** Antileprotic agents
 - C. Antifungal agents
 - D. Antiviral drugs
 - E. Anthelmintics
 - F. Antimalarial drugs
 - G. Antiamoebic agents

Follow Our WhatsApp & Telegram channel for more update (Noteskarts B.Pharma Notes)

Unit-3

Subscribe & Visit our Website For Notes

A. Antitubercular Agents

Definition:

- Antitubercular agents are drugs used to prevent or treat **tuberculosis** (**TB**)—a chronic infectious disease caused mainly by *Mycobacterium tuberculosis*.
- These drugs either kill the bacteria (**bactericidal**) or inhibit their growth (**bacteriostatic**).

Classification:

A. First-Line Drugs (Primary drugs – more effective, less toxic)

- 1. Isoniazid (INH)
- 2. Rifampicin
- 3. Pyrazinamide
- 4. Ethambutol
- 5. Streptomycin

B. Second-Line Drugs (Used when resistance/toxicity to first-line drugs occurs)

- 1. Ethionamide
- 2. Capreomycin
- 3. Cycloserine
- 4. p-Aminosalicylic acid (PAS)
- 5. Kanamycin, Amikacin, Levofloxacin, Moxifloxacin (Fluoroquinolones)

Antitubercular Drugs:

1. Isoniazid (INH):

- **Definition:** Most potent first-line drug for TB; synthetic hydrazide of isonicotinic acid.
- Mechanism of Action: Inhibits mycolic acid synthesis (essential component of mycobacterial cell wall) → bactericidal for actively growing bacilli.
- Uses:
 - Treatment of active TB (in combination with other drugs)
 - o Prophylaxis in high-risk individuals (contacts of TB patients)
- Adverse Effects:
 - o Peripheral neuritis (due to pyridoxine deficiency)
 - o Hepatitis, rash, fever
 - o CNS toxicity (seizures, memory issues)
- **Note:** Pyridoxine (Vit. B6) is given to prevent neuritis.

2. Rifampicin:

- **Definition:** Broad-spectrum bactericidal antibiotic derived from *Streptomyces*; key TB drug.
- Mechanism of Action: Inhibits DNA-dependent RNA polymerase → blocks RNA synthesis in bacteria.
- Uses:
 - All forms of TB (pulmonary & extrapulmonary)
 - o Leprosy, meningococcal prophylaxis
 - o Certain bacterial infections resistant to other drugs
- Adverse Effects:
 - Hepatotoxicity
 - Flu-like symptoms
 - Red-orange discoloration of urine, sweat, tears (harmless but alarming to patients)
 - o GI upset

3. Pyrazinamide:

- **Definition:** Nicotinamide derivative; highly effective against intracellular bacilli in acidic environment.
- **Mechanism of Action:** Converted to **pyrazinoic acid** in bacteria → disrupts membrane transport & energy production.
- Uses:
 - Short-course TB regimens (first 2 months)
- Adverse Effects:
 - Hepatotoxicity
 - o Hyperuricemia → gout
 - Arthralgia

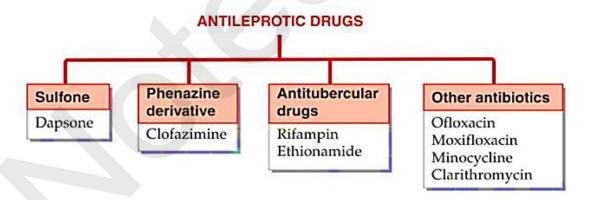
4. Ethambutol:

- **Definition:** Synthetic, bacteriostatic anti-tubercular drug.
- Mechanism of Action: Inhibits arabinosyl transferase → blocks synthesis of arabinogalactan (cell wall component).
- Uses:
 - o Prevents resistance when used with other drugs in TB therapy
- Adverse Effects:
 - o Optic neuritis (loss of red–green color vision)
 - Headache, confusion
 - o GI upset

5. Streptomycin:

- **Definition:** Aminoglycoside antibiotic from *Streptomyces griseus*.
- **Mechanism of Action:** Inhibits **protein synthesis** by binding to 30S ribosomal subunit → bactericidal.
- Uses:
 - o Severe or resistant TB (given IM)

- Adverse Effects:
 - o Ototoxicity (hearing loss, vertigo)
 - Nephrotoxicity
 - Neuromuscular blockade (rare)


B. Antileprotic Agents

Definition

- Antileprotic agents are the drugs used for the treatment of leprosy (Hansen's disease)
 a chronic infectious disease caused by Mycobacterium leprae.
- Their aim is to kill the bacteria, prevent disease progression, and reduce transmission.

Classification of Antileprotic Agents

- 1. Primary (Main) Drugs
 - o Dapsone
 - o Rifampicin
 - Clofazimine
- 2. Alternative / Second-line Drugs
 - Ofloxacin
 - Minocycline
 - Clarithromycin

1. Dapsone

Definition:

A synthetic sulfone drug, bacteriostatic against *M. leprae*. It is the oldest and most widely used antileprotic drug.

Mechanism of Action:

Inhibits dihydropteroate synthase → blocks folic acid synthesis in bacteria → prevents bacterial growth.

Unit-3

Subscribe & Visit our Website For Notes

Uses:

- Main drug in Multidrug Therapy (MDT) for leprosy
- Also used in dermatitis herpetiformis and pneumocystis pneumonia (PCP)
 prophylaxis.

Adverse Effects:

- Hemolysis (especially in G6PD deficiency)
- Methemoglobinemia
- Peripheral neuropathy
- Skin rashes, pruritus

2. Rifampicin

Definition:

A semisynthetic antibiotic from *Streptomyces*, highly bactericidal against *M. leprae* and *M. tuberculosis*.

Mechanism of Action:

• Inhibits **DNA-dependent RNA polymerase** → blocks RNA synthesis in bacteria.

Uses:

- Multibacillary and paucibacillary leprosy (part of MDT)
- Tuberculosis, meningococcal prophylaxis.

Adverse Effects:

- Hepatotoxicity
- Orange-red discoloration of urine, sweat, and tears
- Gastrointestinal upset
- Flu-like syndrome

3. Clofazimine

Definition:

A phenazine dye with anti-inflammatory and bactericidal activity against M. leprae.

Mechanism of Action:

- Binds to mycobacterial DNA \rightarrow inhibits growth.
- Also has anti-inflammatory effects to reduce lepra reactions.

Uses:

- Multibacillary leprosy (MDT component)
- Lepra reaction (type 2: erythema nodosum leprosum).

Adverse Effects:

- Skin discoloration (red-brown to black)
- Gastrointestinal irritation
- Dry skin

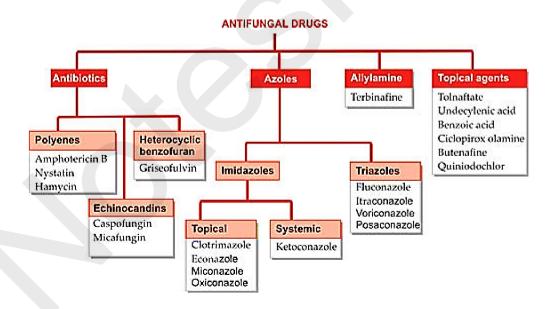
Scan This QR For Notes, GPAT, And Jobs Related Update

Scan This QR For Only GPAT Test Series

C. Antifungal Agents

Definition

Antifungal agents are drugs used to prevent or treat fungal infections (mycoses) by killing the fungus (fungicidal) or inhibiting its growth (fungistatic) without harming host tissues.


Classification of Antifungal Agents

1. Systemic Antifungals for Systemic Infections

- **Polyenes:** Amphotericin B, Nystatin (oral/topical)
- Azoles: Ketoconazole, Fluconazole, Itraconazole, Voriconazole
- Echinocandins: Caspofungin, Micafungin, Anidulafungin
- Others: Flucytosine, Griseofulvin

2. Topical Antifungals for Superficial Infections

- Azoles: Clotrimazole, Miconazole, Econazole
- Allylamines: Terbinafine, Naftifine
- Others: Tolnaftate, Ciclopirox

1. Amphotericin B (Polyene)

- **Definition:** Broad-spectrum antifungal used for severe systemic mycoses.
- **Mechanism of Action:** Binds to **ergosterol** in fungal cell membranes → forms pores → leakage of intracellular contents → cell death.
- Uses:
 - Systemic fungal infections (Histoplasmosis, Cryptococcosis, Blastomycosis, Candidiasis)

Unit-3

Subscribe & Visit our Website For Notes

- o Aspergillosis
- Adverse Effects:
 - o Fever, chills
 - Nephrotoxicity (kidney damage)
 - o Hypokalemia
 - o Anemia

2. Nystatin (Polyene)

- **Definition:** Topical/oral antifungal for Candida infections.
- Mechanism: Same as Amphotericin B (binds to ergosterol, damages membrane).
- Uses:
 - o Oral thrush
 - Vaginal candidiasis
 - Cutaneous candidiasis
- Adverse Effects: Nausea, vomiting, skin irritation (topical).

3. Azoles (Ketoconazole, Fluconazole, Itraconazole, Voriconazole)

- **Definition:** Synthetic antifungals with broad-spectrum activity.
- Mechanism: Inhibit fungal cytochrome P450 enzyme (14- α -demethylase) \rightarrow block conversion of lanosterol to ergosterol \rightarrow disrupt membrane synthesis.
- Uses:
 - Systemic and superficial mycoses
 - o Candida, Cryptococcus, Histoplasma, Aspergillus
 - o Dermatophyte infections (skin, nails, hair)
- Adverse Effects:
 - Hepatotoxicity
 - o GI upset
 - o Endocrine effects (Ketoconazole → gynecomastia)

4. Echinocandins (Caspofungin, Micafungin, Anidulafungin)

- **Definition:** Newer antifungals for systemic Candida & Aspergillus.
- Mechanism: Inhibit β -(1,3)-D-glucan synthase \rightarrow block fungal cell wall synthesis.
- Uses:
 - Invasive candidiasis
 - o Invasive aspergillosis (when unresponsive to other drugs)
- Adverse Effects: Fever, rash, GI upset.

5. Flucytosine

- **Definition:** Antimetabolite antifungal, given orally.
- Mechanism: Converted inside fungal cells to 5-fluorouracil (5-FU) → inhibits DNA & RNA synthesis.
- Uses:
 - Combined with Amphotericin B for cryptococcal meningitis.
- Adverse Effects: Bone marrow suppression, GI upset.

Unit-3

Subscribe & Visit our Website For Notes

6. Griseofulvin

- **Definition:** Fungistatic drug for dermatophyte infections.
- Mechanism: Disrupts mitotic spindle \rightarrow inhibits fungal mitosis.
- Uses:
 - o Tinea infections (skin, hair, nails)
- Adverse Effects: Headache, GI upset, photosensitivity.

7. Terbinafine (Allylamine)

- **Definition:** Fungicidal drug for dermatophyte infections.
- Mechanism: Inhibits squalene epoxidase → decreases ergosterol synthesis.
- Uses:
 - Onychomycosis (nail fungal infection)
 - o Tinea infections
- Adverse Effects: GI upset, hepatotoxicity, rash.

Scan This QR For Notes, GPAT, And Jobs Related Update

D. Antiviral Drugs

Definition

- Antiviral drugs are medicinal agents used to prevent or treat **viral infections**.
- They work by inhibiting specific stages of the **viral life cycle** such as **attachment**, **entry**, **replication**, **transcription**, **protein synthesis**, **or release** of new viral particles.

Classification of Antiviral Drugs

Sr. No.	Class / Group	Example Drugs	
1	Anti-Herpesvirus drugs	Acyclovir, Valacyclovir, Ganciclovir,	
		Famciclovir	
2	Anti-CMV (Cytomegalovirus)	Ganciclovir, Valganciclovir, Foscarnet	
	drugs		
3	Anti-Influenza drugs	Oseltamivir, Zanamivir, Amantadine,	
		Rimantadine	
4	Anti-HIV drugs	Zidovudine (AZT), Lamivudine, Tenofovir,	
	(Antiretrovirals)	Efavirenz, Ritonavir	
5	Anti-Hepatitis drugs	Interferon-α, Ribavirin, Sofosbuvir,	
		Ledipasvir	
6	Anti-RSV (Respiratory	Ribavirin, Palivizumab	
	Syncytial Virus) drugs		
7	Broad-spectrum antiviral drugs	Ribavirin, Interferons	

Detailed Drugs Description

1. Acyclovir

- **Definition**: A guanine nucleoside analogue effective against HSV-1, HSV-2, and VZV.
- Mechanism of Action:

Activated by viral **thymidine kinase** \rightarrow converted to acyclovir triphosphate \rightarrow inhibits **viral DNA polymerase** \rightarrow terminates viral DNA chain elongation.

- Uses:
 - Herpes simplex infections (oral/genital)
 - Varicella-zoster (chickenpox, shingles)
 - o HSV encephalitis
- Adverse Effects:
 - o Nausea, vomiting
 - o Headache
 - Nephrotoxicity (crystalluria)
 - Neurotoxicity (rare)

Unit-3

Subscribe & Visit our Website For Notes

2. Oseltamivir

- **Definition**: Neuraminidase inhibitor active against Influenza A and B.
- Mechanism of Action:

Inhibits viral **neuraminidase enzyme**, preventing release of new viral particles from infected cells.

- Uses:
 - Treatment and prevention of influenza A & B
- Adverse Effects:
 - Nausea, vomiting
 - Headache
 - o Rare neuropsychiatric events

3. Zidovudine (AZT)

- Definition: A nucleoside reverse transcriptase inhibitor (NRTI) used in HIV treatment.
- Mechanism of Action:

Phosphorylated inside the host cell \rightarrow inhibits **reverse transcriptase** \rightarrow prevents viral DNA synthesis from RNA template.

- Uses:
 - o HIV-1 and HIV-2 infection
 - o Prevention of mother-to-child transmission
- Adverse Effects:
 - o Bone marrow suppression (anemia, neutropenia)
 - o Headache, fatigue
 - o Myopathy (long-term use)

4. Sofosbuvir

- **Definition**: A nucleotide analogue used in chronic Hepatitis C virus (HCV) infection.
- Mechanism of Action:

Inhibits NS5B RNA-dependent RNA polymerase, preventing viral RNA replication.

- Uses:
 - Chronic HCV infection (often in combination with Ledipasvir or Ribavirin)
- Adverse Effects:
 - o Fatigue, headache
 - Nausea
 - Insomnia

General Uses of Antiviral Drugs in Pharmacology

- Treatment of acute viral infections (e.g., influenza, herpes, hepatitis, HIV)
- **Prophylaxis** in high-risk individuals (e.g., influenza prevention in outbreaks)
- Chronic viral suppression (e.g., HIV, HBV)
- Prevention of **vertical transmission** (e.g., HIV mother-to-child)

E. Anthelmintics

Definition

- Anthelmintics are drugs used to **treat infections caused by parasitic worms** (helminths) such as roundworms, tapeworms, and flukes.
- They either **kill** the worms (**vermicide**) or **expel** them from the body (**vermifuge**) by affecting their biochemical processes.

Classification of Anthelmintics

Sr. No.	Class / Group	Example Drugs	Main Use	
1	Benzimidazoles	Albendazole, Mebendazole,	Broad spectrum –	
		Thiabendazole	nematodes, cestodes	
2	Imidazothiazoles	Imidazothiazoles Levamisole Roundworms		
3	Tetrahydropyrimidines	yrimidines Pyrantel pamoate Roundworms, hookworms		
4	Piperazine derivatives	azine derivatives Piperazine citrate Ascaris, pinworms		
5	Macrocyclic lactones	Ivermectin	Onchocerciasis,	
			strongyloidiasis	
6	Salicylanilides &	Niclosamide	Tapeworms	
	Substituted phenols			
7	Isoquinoline derivatives	Praziquantel	Schistosomiasis, cestodes,	
			trematodes	
8	Others	Diethylcarbamazine (DEC)	Filariasis	

1. Albendazole

- **Definition**: A broad-spectrum benzimidazole derivative.
- Mechanism of Action:

Binds to β -tubulin in the parasite \rightarrow inhibits microtubule synthesis \rightarrow blocks glucose uptake \rightarrow energy depletion \rightarrow death of worm.

- Uses:
 - o Roundworms (Ascaris, Enterobius)
 - Hookworms, whipworms
 - Tapeworms (cysticercosis)
 - Hydatid disease
- Adverse Effects:
 - o Abdominal pain, nausea
 - Headache
 - Rare: liver enzyme elevation

2. Mebendazole

• **Definition**: Broad-spectrum benzimidazole similar to albendazole.

Unit-3

Subscribe & Visit our Website For Notes

- **Mechanism of Action**: Same as albendazole (microtubule inhibition, glucose depletion).
- Uses:
 - o Ascariasis, trichuriasis, hookworm, enterobiasis
- Adverse Effects:
 - o Mild GI upset
 - Rare hypersensitivity

3. Piperazine

- **Definition**: A simple heterocyclic compound used for roundworms.
- Mechanism of Action:

Causes **flaccid paralysis** of worms by blocking acetylcholine at neuromuscular junction \rightarrow worms expelled by peristalsis.

- Uses:
 - Ascariasis
 - Enterobiasis (pinworms)
- Adverse Effects:
 - o Nausea, vomiting
 - o Rare neurotoxicity (ataxia, vertigo)

4. Ivermectin

- **Definition**: A macrocyclic lactone derived from *Streptomyces avermitilis*.
- Mechanism of Action:

Stimulates release of **GABA** in parasite \rightarrow increases chloride ion influx \rightarrow paralysis and death of worm.

- Uses:
 - o Onchocerciasis (river blindness)
 - Strongyloidiasis
 - Filariasis (in combination therapy)
- Adverse Effects:
 - Pruritus, rash
 - Fever
 - Rare neurotoxicity

5. Praziquantel

- **Definition**: Isoquinoline derivative effective against trematodes and cestodes.
- Mechanism of Action:

Increases **calcium permeability** in parasite \rightarrow sustained contraction \rightarrow paralysis and death.

- Uses:
 - Schistosomiasis
 - Cestodes (tapeworms)
 - Clonorchiasis
- Adverse Effects:

Unit-3

Subscribe & Visit our Website For Notes

- o Dizziness, headache
- GI upset
- Allergic reactions

6. Diethylcarbamazine (DEC)

- **Definition**: Piperazine derivative used in lymphatic filariasis.
- Mechanism of Action:

Immobilizes microfilariae and alters their surface, making them more susceptible to host immune attack.

- Uses:
 - o Lymphatic filariasis (Wuchereria bancrofti, Brugia malayi)
 - Loiasis
- Adverse Effects:
 - Fever, headache
 - o Mazzotti reaction (due to microfilariae death: rash, hypotension)

Scan This QR For Notes, GPAT, And Jobs Related Update

F. Antimalarial Drugs

Definition:

- Antimalarial drugs are agents used to **prevent or treat malaria**, a disease caused by *Plasmodium* species (**P. falciparum**, **P. vivax**, **P. malariae**, **P. ovale**, **P. knowlesi**).
- They act by killing the parasite at various stages of its **life cycle** (blood stage, liver stage, or gametocyte stage).

Classification of Antimalarial Drugs

A. Based on Site of Action in Parasite Life Cycle

- 1. **Tissue schizontocides** (act on liver stage)
 - o Primaquine, Tafenoquine
- 2. **Blood schizontocides** (act on asexual erythrocytic stage)
 - Chloroquine, Quinine, Mefloquine, Artemisinin derivatives, Atovaquoneproguanil
- 3. Gametocytocides (kill sexual forms in blood)
 - o Primaquine (most effective), Artemisinin derivatives
- 4. **Sporontocides** (prevent development in mosquito)
 - o Primaquine

Antimalarials	Classification	Mode of Action	Polymer Carriers	References
Primaquine	Hypnozoiticidal and gametocytocidal	Primaquine interferes with the electron transport in the parasite during respiration process	Nanoliposomes Dendrimers Polymer drug conjugates	57 63, 65 74,77
Chloroquine	Blood schizontocides	Chloroquine accumulate in the acidic food vacuoles of intraerythrocytic trophozoites and thereby prevent haemoglobin degradation	Nanoliposomes Hydrogels Dendrimers	58 38, 39 54, 65
Artemisinin Dihydroartemisinin	Gametocytocidal	Involves the heme-mediated decomposition of the peroxide bridge to produce carbon-centred free radicals	Micelles Polymer-drug conjugates	47, 49 74
Curcumin	Blood schizontocides	Curcumin inhibits the activity of enzymes and lipid peroxides	Hydrogels	33, 34, 35
Artemether Beta-Artemether	Gametocytodal	It acts against erythrocytic stages of <i>P. falciparum</i> and inhibits nucleic acid and protein synthesis.	Micelles Nanoliposomes	50 55
Lumefantrine	Blood schizontocides	Lumefantrine is believed inhibits nucleic and formation of β-hematin by forming a complex with hemin	Nanoliposomes Hydrogels	56 37

B. Based on Chemical Class

Class	Examples	
4-Aminoquinolines	Chloroquine, Amodiaquine	
Quinoline-methanol	Quinine, Mefloquine	
Artemisinin derivatives	Artemether, Artesunate, Dihydroartemisinin	
Diaminopyrimidines	Pyrimethamine	
Sulfonamides	Sulfadoxine	
Naphthoquinones	Atovaquone	
8-Aminoquinolines	Primaquine, Tafenoquine	

Important Drugs – Details

1. Chloroquine

- **Definition**: 4-aminoquinoline blood schizontocide.
- Mechanism of Action:

Concentrates in parasite's **food vacuole** \rightarrow inhibits heme polymerase \rightarrow toxic heme accumulates \rightarrow parasite death.

- Uses:
 - Treatment of sensitive P. vivax, P. ovale, P. malariae
 - Prophylaxis in chloroquine-sensitive areas
 - o Extra uses: Amoebic liver abscess, rheumatoid arthritis
- Adverse Effects:
 - o Nausea, vomiting
 - Pruritus
 - o Retinopathy (long-term use)
 - Headache

2. Quinine

- **Definition**: Alkaloid from Cinchona bark; blood schizontocide.
- Mechanism of Action:

Similar to chloroquine – interferes with heme metabolism in parasite.

- Uses:
 - Severe falciparum malaria (IV form)
 - Chloroquine-resistant cases
- Adverse Effects:
 - o Cinchonism (tinnitus, headache, nausea, visual disturbances)
 - Hypoglycemia
 - Cardiac arrhythmias

3. Artemisinin Derivatives (Artemether, Artesunate, DHA)

- **Definition**: Sesquiterpene lactones from *Artemisia annua*.
- Mechanism of Action:

Produces free radicals in parasite food vacuole \rightarrow damages parasite proteins.

Unit-3

Subscribe & Visit our Website For Notes

- Uses:
 - First-line for falciparum malaria (as Artemisinin Combination Therapy ACT)
- Adverse Effects:
 - Nausea, dizziness
 - o Rare neurotoxicity, QT prolongation

4. Primaquine

- **Definition**: 8-aminoquinoline tissue schizontocide & gametocytocide.
- Mechanism of Action:

Generates reactive oxygen species → damages parasite mitochondria.

- Uses
 - o Radical cure of *P. vivax* and *P. ovale* (eradicates hypnozoites in liver)
 - Gametocytocide for all species
- Adverse Effects:
 - Hemolysis in G6PD deficiency
 - o GI upset
 - o Methemoglobinemia

5. Atovaquone-Proguanil

Mechanism of Action:

Atovaquone inhibits mitochondrial electron transport; Proguanil inhibits dihydrofolate reductase → synergistic action.

- Uses
 - Falciparum malaria (treatment and prophylaxis)
- Adverse Effects:
 - o Abdominal pain, headache
 - Nausea, vomiting

G. Antiamoebic Agents

Definition

Antiamoebic agents are drugs used to treat infections caused by **Entamoeba histolytica**—the protozoan responsible for **amoebiasis**.

They act on **different stages of the parasite** (trophozoite, cyst) and at different **sites of infection** (intestinal lumen, intestinal wall, liver).

Classification of Antiamoebic Drugs

1. Luminal Amoebicides (act mainly in intestinal lumen)

- Diloxanide furoate
- Iodoquinol
- Paromomycin

2. Tissue Amoebicides (act in intestinal wall & liver)

- Metronidazole
- Tinidazole
- Ornidazole
- Secnidazole

3. Mixed Amoebicides (act in both lumen and tissue)

- Metronidazole (partially)
- Tinidazole (partially)

4. Systemic Amoebicides (extraintestinal amoebiasis)

- Chloroquine
- Emetine, Dehydroemetine (used rarely due to toxicity)

1. Metronidazole

- **Definition**: A nitroimidazole derivative with tissue and partial luminal activity.
- Mechanism of Action:

In anaerobic organisms, its nitro group is reduced to active metabolites \rightarrow bind to DNA \rightarrow inhibit nucleic acid synthesis \rightarrow cell death.

- Uses:
 - o Intestinal amoebiasis (with a luminal agent)
 - Hepatic amoebiasis (liver abscess)
 - o Giardiasis, trichomoniasis, anaerobic bacterial infections
- Adverse Effects:
 - Metallic taste
 - o Nausea, vomiting

Unit-3

Subscribe & Visit our Website For Notes

- o Disulfiram-like reaction with alcohol
- Neurotoxicity (rare)

2. Tinidazole

- **Definition**: Longer-acting nitroimidazole, similar to metronidazole.
- Mechanism of Action: Same as metronidazole (DNA damage in anaerobes).
- Uses:
 - Amoebiasis
 - o Giardiasis, trichomoniasis
- Adverse Effects:
 - o GI upset
 - Metallic taste
 - CNS effects (rare)

3. Diloxanide Furoate

- **Definition**: Luminal amoebicide used in asymptomatic intestinal infection.
- **Mechanism of Action**: Exact mechanism unknown thought to interfere with parasite metabolism inside lumen.
- Uses:
 - o Asymptomatic cyst carriers of E. histolytica
 - Combined with metronidazole in invasive disease
- Adverse Effects:
 - o Flatulence
 - Abdominal cramps
 - Rare skin rash

4. Paromomycin

- **Definition**: Aminoglycoside antibiotic with luminal amoebicidal action.
- Mechanism of Action:

Inhibits protein synthesis by binding to 30S ribosome of parasite.

- Uses:
 - Asymptomatic intestinal infection
 - Alternative in pregnancy
- **Adverse Effects:**
 - GI upset
 - Abdominal cramps

5. Chloroquine

- **Definition**: Antimalarial drug with systemic antiamoebic action.
- Mechanism of Action:

Concentrates in liver \rightarrow kills trophozoites in hepatic tissue.

- Uses:
 - Hepatic amoebiasis (with a luminal agent)
- Adverse Effects:
 - o Nausea, headache

